Cellular internalisation of dissolved cobalt ions from ingested CoFe2O4 nanoparticles: in vivo experimental evidence

Journal: *Environmental Science & Technology*

Manuscript ID: es-2012-05132g

Manuscript Type: Article

Date Submitted by the Author: 24-Dec-2012

Complete List of Authors:

Drobne, Damjana; University of Ljubljana, Biotechnical Faculty, Department of Biology
Novak, Sara; University of Ljubljana, Biotechnical Faculty, Department of Biology
Golobic, Miha; University of Ljubljana, Biotechnical Faculty, Department of Biology
Zupanc, Jernej; University of Ljubljana, Biotechnical Faculty, Department of Biology
GIANONCELLI, ALESSANDRA; Sincrotrone Trieste S.C.p.A., ELETTRA
Kiskinova, Maya; Sincrotrone Trieste, Experimental Division
Kaulich, Burkhard; Sincrotrone Trieste, Experimental Division
Pelicon, Primoz; Institute Jozef Stefan,
Vavpetic, Primož; Institute Jozef Stefan,
Jeromel, Luka; Institute Jozef Stefan,
Ogrinc, Nina; Institute Jozef Stefan,
Makovec, Darko; Institute Jozef Stefan,
Cellular internalisation of dissolved cobalt ions from ingested CoFe₂O₄ nanoparticles: *in vivo* experimental evidence

Sara Novak†, Damjana Drobne†‡§*, Miha Golobič†, Jernej Zupanc†, Alessandra Gianoncelli¶, Maya Kiskinova¶, Burkhard Kaulich¶, Primož Pelicon‖, Primož Vaupetič‖, Luka Jeromel†, Nina Ogrinc†, Darko Makovec†

†Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
‡Centre of Excellence, Advanced Materials and Technologies for the Future (CO NAMASTE), Jamova cesta 39, 1000 Ljubljana, Slovenia
§Center of Exelence, Nanoscience and Nanotechnology (Nanocentre), Jamova cesta 39, 1000 Ljubljana, Slovenia
¶Sincrotrone Trieste S.C.p.A. Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
‖Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

Corresponding author: damjana.drobne@bf.uni-lj.si
Abstract

With a model invertebrate animal we have assessed the fate of magnetic nanoparticles in biologically relevant media, i.e. digestive juices. The toxic potential and the internalisation of such nanoparticles by non-target cells was also examined. The aim of this study was to provide experimental evidence on the formation of Co$^{2+}$, Fe$^{2+}$ and Fe$^{3+}$ ions from CoFe$_2$O$_4$ nanoparticles in the digestive juices of a model organism. Standard toxicological parameters were observed. Cell membrane stability was tested with a modified method for assessment of cell membrane stability. Proton induced x-ray emission and low energy synchrotron radiation X-ray fluorescence was used to study internalisation and distribution of Co and Fe. Co$^{2+}$ ions were found to be more toxic than nanoparticles. We confirmed that Co$^{2+}$ ions are accumulated in the hepatopancreas but Fe$^{2+}$ ions or CoFe$_2$O$_4$ nanoparticles are not retained in vivo. A model biological system with a terrestrial isopod is suited to studies of the potential dissolution of ions and other products from metal-containing nanoparticles in biologically complex media.
Introduction

In the past decade, magnetic nanoparticles (NPs) have attracted much attention because of their potential use in different fields such as medicine, electronics and energetic.1

CoFe\textsubscript{2}O\textsubscript{4} NPs are magnetic NPs with potential application in cell separation and purification, as contrast agents for magnetic resonance imaging (MRI), for drug delivery, as biosensors for biological targets and for magnetic fluid hyperthermia (MFH).2-8 The key issue which must be resolved before CoFe\textsubscript{2}O\textsubscript{4} nanoparticles can be widely applied for medical purposes refers to dissolution of cobalt (Co) from CoFe\textsubscript{2}O\textsubscript{4} nanoparticles in biological fluids. Cobalt ions (Co2+) may induce the formation of Reactive Oxygen Species (ROS),9 oxidize proteins10 and cause oxidative DNA damage11 and consequently, the possible dissolution of the cobalt ions from the CoFe\textsubscript{2}O\textsubscript{4} particles must be controlled.

It is now widely recognized that such dissolution plays an important role in nanoparticle toxicity, but the extent of this phenomenon remains unclear. It has been found to be influenced mainly by pH but also by the specific surface area of the nanoparticles. Natural organic compounds in the cellular media may either enhance or reduce the release of ions from nanoparticles, depending on their chemical composition and concentration.12,13

Methods used for studying dissolution include different chemical analytical methods, such as atomic absorption spectroscopy (AAS),14 inductively coupled plasma mass spectrometry (ICP-MS)15 and localized surface plasmon resonance (LSPR).16 These methods may be used in conjunction with ultracentrifugation of a suspension which separates the insoluble nanoparticles from ions that remain in solution.

Measurements of dissolved ions from particles in biological studies are useful only if they are conducted in biologically relevant media. As a rule, it is not possible to mimic biological media, therefore it is necessarily to conduct experiments in \textit{in vivo} systems. Data on dissolution are very important in order to get an insight into potentially compromised efficiency of applied nanomaterials or their toxicity when coming in contact with biological fluids.

In the work presented here we have selected a model biological system, in which CoFe\textsubscript{2}O\textsubscript{4} nanoparticles are introduced into a complex biological medium comprised of a digestive gut and digestive glands of a model terrestrial isopod crustacean. Measurements of pH in the gut of terrestrial isopods (\textit{Porcellio scaber}) with a LIX-type pH microelectrode
showed pH 5.5–6.0 in the anterior hindgut, and pH 6.0–6.5 in the posterior hindgut. The pH value of the P. scaber digestive glands (hepatopancreas) is 6.1 ± 0.3 and at its distal region it is slightly more acidic, with pH 5.8 - 6.1. This biological system represents a complex biological environment which acts as an assembly of biologically relevant conditions which may affect dissolution of cobalt or iron ions from nanoparticulate CoFe₂O₄.

Animals were fed with CoFe₂O₄ nanoparticles added on leaves in a dry, biologically unreactive form. Consumed particles entered the gut and digestive system, and are retained in the digestive system for 2-4 hours. Reflux of partly digested food also reaches the digestive glands, but with some delay. Apart from digestion and absorption of food, one of major roles of the digestive system is to accumulate metals in proportion to that in the gland lumen. In bioaccumulation studies with isopods, it is expected that accumulation of a metal is related to the bioavailable metal ion fraction of the gland fluid.

The aim of this study was to provide experimental evidence on the formation of Co²⁺ and/or Fe²⁺/Fe³⁺ ions from CoFe₂O₄ nanoparticles in the digestive juices of a model organism, accumulation of dissolved ions by digestive gland epithelium, cellular internalisation of particles as well as their toxic potential.

We hypothesize that metal ions are generated from ingested CoFe₂O₄ nanoparticles in digestive system and that ions are accumulated by digestive gland cells proportional to exposure doses. We also hypothesise that if particles enter cells they may reach a location distinct from that occupied by ions that have been accumulated following other pathways.

Materials and methods

Chemicals

Acridine orange (AO), ethidium bromide (EB), sodium chloride (NaCl), potassium chloride (KCl), magnesium chloride (MgCl₂), glucose and 2-amino-2-hydroxymethyl-propane-1,3-diol (TRIS), were purchased from Merck. Cobalt (II) chloride hexahydrate (CoCl₂•6H₂O), 99.9% (metal basis) was purchased from Alfa Aesar Johnson Mathey Company. CoFe₂O₄ nanoparticles were synthesized at the Department for Materials Synthesis, Jožef Stefan Institute in Ljubljana.
Model organisms

Terrestrial isopods *Porcellio scaber* (Isopoda, Crustacea) were collected in July, 2011 at an uncontaminated location near Ljubljana, Slovenia. The animals were kept in a terrarium filled with a layer of moistened soil and a thick layer of partly decomposed hazelnut tree leaves (*Corylus avellana*), at a temperature of 20 ± 2°C and a 16:8 h light:dark photoperiod. Only adult animals of both sexes and weighing more than 30 mg were used. If moulting or the presence of marsupia were observed, the animals were excluded from the experiment in order to keep the investigated population as physiologically homogenous as possible.

The digestive system of the terrestrial isopod *Porcellio scaber* is composed of a stomach, four blind-ending digestive gland tubes (hepatopancreas) and a gut. Food enters the digestive glands directly via a short stomach or after the reflux from the gut and ingested material is mixed with digestive fluids.

Characterization of nanoparticles

The nanoparticles were synthesized by co-precipitation using NaOH from aqueous solutions of Co(II) and Fe (III) ions at elevated temperatures. The nanoparticle samples were thoroughly washed with water after the synthesis and then suspended in aqueous glucose solution. The suspended CoFe_2O_4 nanoparticles show strong agglomeration in dH_2O.

Nanoparticles were inspected with transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDXS) (JEOL 2010F) and Zeta potential was also measured (Brookhaven Instruments Corp., ZetaPALS). The aim of these analyses was to provide data on the suspension of particles and allow comparisons among different studies and within our experiments.

After exposure in feeding experiments, remnants of selected leaves were dried and attached to mounts with silver paint (SPI), gold-palladium sputtered (Sputter coater SCD 050, BAL-TEC) and investigated by field emission scanning electron microscopy (SEM) (Jeol JSM-6500F) at the Institute of Metals and Technology in Ljubljana. Energy dispersive X-ray analysis (EDX) was used to establish their chemical composition (EDS/WDS Oxford Instruments INCA, Jeol JSM-6500F) at the Institute of Metals and Technology.
Food preparation

Hazelnut leaves were collected in an uncontaminated area and dried at room temperature and the animals consumed particles in a suspension applied to a leaf surface. Dried leaves were cut into pieces of approximately 100 mg. The reference material, CoCl₂ or CoFe₂O₄ nanoparticles, was suspended in distilled water before each experiment to obtain final concentrations of cobalt of 1000, 2000 and 5000 µg/ml. To diminish agglomeration, a suspension of nanoparticles in H₂O was sonicated in an ultrasonic bath for 1 h before being applied to the leaves.

In the control group, the leaves were treated with distilled water and in the test group, a suspension of particles was brushed onto the abaxial surface of leaves to give final nominal concentrations of 1000, 2000 and 5000 µg CoCl₂ or CoFe₂O₄ nanoparticles per gram (dry weight) of leaf. The leaves were allowed to stand until dry.

Experimental Procedure

Each individual animal was placed in a 9 cm Petri dish. One hazelnut leaf was treated with distilled water, or a suspension of CoCl₂ or nano-CoFe₂O₄ and placed in the dish as the animal's only food source. Humidity in the Petri dish was maintained by spraying tap water on the internal side of the lid every day. All Petri dishes were kept in a large glass container under controlled conditions in terms of air humidity (≥80%), temperature (21±1°C) and light regime (16:8 h light:dark photoperiod).

Different numbers of animals in each individual experiment were exposed to varying concentrations of nanoparticles for 14 days (Table S1, Supporting Information). Four experiments, A, B, C and D were performed one at the time and the exposure concentrations of suspensions and initial number of tested animals were selected on the basis of the type of analyses conducted after exposure.

The concentrations were chosen on the basis of our preliminary experiments. After exposure, the animals were anaesthetized at low temperature and then decapitated and their digestive glands isolated. In experiments, digestive gland tubes were used for different analyses (Table S1, Supporting Information).
Feeding parameters, weight change and survival

After 14 d of exposure of the animals to treated leaves, faecal pellets and leaves were removed from the Petri dishes, dried at room temperature for 24 h and weighed. The feeding rate of isopods was calculated as the mass of consumed leaves per wet weight of the animal per day. The food assimilation efficiency was calculated as the difference between the mass of consumed leaves and mass of faecal pellets divided by the mass of consumed leaf. The weight change of an animal was determined as the difference in its mass from the beginning to the end of the experiment.

AO/EB Analysis: Digestive gland cell membrane stability

Cell membrane stability was tested with a modified method for assessment of cell membrane stability, previously described by Valant et al.21,25

A single isolated hepatopancreatic tube was incubated for 5 min in a mixture of the fluorescent dyes acridine orange and ethidium bromide and then put on a microscope slide. Fresh samples were photographed and examined with an Axiosimager Z1 fluorescent microscope (Zeiss) with two different sets of filters. The excitation filter 450 to 490 nm and the emission filter 515 nm (filter set 09) were used to visualize AO and EB stained nuclei, while the excitation filter 365 nm and the emission filter 397 nm (filter set 01) were used to visualize nuclei stained with EB only. Cell membrane integrity was assessed by examination of micrographs. Photographs of intact digestive glands were examined by the same observer twice at intervals of at least 24 h and cell membrane integrity was rated on the scale from 0 to 9 by visual inspection. On the basis of preliminary experiments, it was concluded that non-treated (control) animals showed < 5% of nuclei stained by EB, while severely stressed animals have up to 100% of EB-stained nuclei. The < 5% of hepatopancreatic tubes nuclei stained with EB were classified as 0, and those with the highest proportion (> 95%) of EB stained nuclei as 9.21

Micro-PIXE analysis: Tissue distribution of Co and Fe

For microparticle induced x-ray emission (micro-PIXE) analysis, digestive glands were shock-frozen in liquid propane or N₂, using tissue-freezing medium (Jung Tissue Freezing Medium, Leica). Samples were sectioned with a section thickness of 60 µm using a Leica CM3050 cryotome (Leica) with the temperature of the microtome head and chamber...
maintained between -25°C and -20°C. The sections were placed in pre-cooled Al holders, transferred to an alpha 2-4 Christ freeze dryer using a cryo-transfer assembly cooled with liquid N₂, and then freeze-dried at -30°C and 0.4 mbar for 24 h. Dry sections were mounted between two thin layers of Pioloform foil on the Al sample holder.²⁶,²⁷

For detection of X-rays between 1 keV and 25 keV, two X-ray detectors were used simultaneously. A high-purity germanium X-ray detector (active area 95 mm²; beryllium window, 25 µm thick; polyimide absorber, 100 µm thick) positioned at 135° to the beam direction was used for the energy range of 4 keV-25 keV. Low energy X-rays in the range of 0.8 keV–6 keV were detected by a Si(Li) detector (active area 10 mm²) positioned at 125° to the beam direction. The proton dose was determined by a rotating in-beam chopper. Measurement of micro-PIXE emission and data evaluation for the biological samples of intermediate thickness at the micro-PIXE laboratory, previously described in detail,²⁶,²⁸,²⁹ was performed at the Jožef Stefan Institute in Ljubljana.

We analysed cross sections of isolated digestive glands tubes from six animals. Two analysed animals were control ones, two were fed on food dosed with 2000 µg/g with CoCl₂ and two animals on food dosed with 2000 µg/g nano-CoFe₂O₄. Three or two digestive gland tubes were isolated from each animal and analysed.

LE-XRF analysis: Cell distribution and co-localization of Co and Fe in digestive gland cells

For Low Energy Synchrotron Radiation X-ray Fluorescence (LE-XRF) analysis, isolated digestive glands were shock-frozen in liquid N₂, using tissue-freezing medium (Jung Tissue Freezing Medium, Leica). Samples were sectioned with a section thickness of 14 µm using a Leica CM3050 cryotome (Leica) with the temperature of the microtome head and chamber maintained between -25°C and -20°C. The sections were placed in pre-cooled Al holders, transferred to an alpha 2-4 Christ freeze dryer using a cryo-transfer assembly cooled with liquid N₂, and then freeze-dried at -30°C and 0.4 mbar for 24 h. Dry sections were mounted between two thin layers of Pioloform foil on the sample holder.

LE-XFR experiments were carried out at the Elettra synchrotron radiation facility in Trieste with the TwinMic beamline, a soft X-ray transmission microscope³⁰,³¹ operating in the 400–2200 eV photon energy range. During the experiments TwinMic was operated in STXM
mode,31 in which a microprobe is formed by a zone plate lens and the specimen is raster scanned across it. The TwinMic microscope can provide sub-micron spatial resolution, but we used a spot size and a step size of 1\,µm, which is a useful compromise between lateral resolution adequate for the features of interest and good XRF signal.

The STXM mode allows simultaneous acquisition of X-ray transmission (absorption and phase contrast images) and photon emission (XRF) signals.32 The low X-ray energy range is particularly suited to biological investigations, and allows the simultaneous acquisition of the elemental distributions of elements of low atomic number (B to P) from the K emission lines and elements of higher atomic number (Ca to Nb) from the L emission lines. The absorption and phase contrast images are collected by a configurable detector arrangement consisting of a fast read-out electron multiplying CCD camera coupled to an X-ray-to-visible light conversion system. The LEXRF set-up used for this experiment consists of an annular arrangement of 8 Si drift detectors (SDDs) (PNSensor, Munich, Germany), only 5 of which, coupled to read-out electronics, were used.33, 34 This arrangement currently allows only qualitative analyses. Full elemental quantification will be the subject of future reports.

The X-ray fluorescence spectra obtained for each pixel in the raster scan were batch processed by fitting the peaks with a Gaussian model and with a linear subtraction, using the PyMCA data analysis software.35 Elemental maps were generated by plotting the intensity of the fluorescence peaks as a function of their position in the sample plane.

In experiment A (see Table S1, Supporting Information), a cross section of one isolated gland from control animal, two isolated glands from one animal fed on food dosed with 2000 µg/g CoCl\textsubscript{2} and two sections of digestive gland tubes from one animal fed on food dosed with 2000 µg/g CoFe\textsubscript{2}O\textsubscript{4} nanoparticles were analysed. In experiment B samples from one control animal and two sections from two animals from each treated group (animals fed on food dosed with 2000 µg/g CoCl\textsubscript{2} or CoFe\textsubscript{2}O\textsubscript{4} nanoparticles) were analysed. In experiment C two sections from two different animals both fed on food dosed with 2000 µg/g nano-CoFe\textsubscript{2}O\textsubscript{4} were analysed. All together 12 different cross sections of digestive glands were analysed.

AAS Analysis: Concentration of Co and Fe in digestive glands

Cobalt and iron were measured by atomic absorption spectroscopy in one or two isolated digestive gland tubes from each animal in experiment A and D. Prior to the analysis,
samples were lyophilized, weighed, and completely digested in a 7:1 nitric acid/perchloric acid mixture. After evaporation of the acid, the residue was taken up in 0.2 % HNO₃ and total Co and Fe concentrations in the digestive glands were determined by flame atomic absorption spectrometry (Perkin Elmer AAnalyst 100) in the Department of Biology, University of Ljubljana. Reagent blanks and standard solutions (Merck) were used to ensure accuracy and precision in the analysis.

Concentration of Co in the supernatant of the nano-CoFe₂O₄ suspensions

For the analysis, 1000 mg/L and 2000 mg/L suspensions of CoFe₂O₄ NPs in bidistilled water were prepared in the same way as for the *in vivo* tests. The suspensions were ultracentrifuged at 100,000 g for 30 min at 20°C. The pellet formed by nanoparticles was separated from the supernatant which was again ultracentrifuged at 100,000 g for 30 min at 20°C. Then the supernatant was separated from the pellet and divided into two aliquots for further dilution. One aliquot was diluted with an equal volume of bidistilled water, the other with an equal volume of 1M HCl. Then 2 ml from each aliquot was analyzed by flame atomic absorption spectrometry (Perkin Elmer Analyst 100) in the Department of Biology. The difference in cobalt ion content between the acidified and non-acidified suspension indicates that nanoparticles remaining in the supernatant after centrifugation are dissolved. Detection of cobalt by AAS would be possible provided that the concentration of ionized Co is above the detection limit (9 µg/L).

The original suspensions of CoFe₂O₄ NPs (1000 and 2000 mg/L of CoFe₂O₄) were also analysed by AAS. Prior to the analysis the suspensions were diluted (1:1000) with distilled water and HCl to see if dilution medium effects the measurements by dissolving the nanoparticles in the solutions.

Data analysis

Data were analysed by standard statistical methods. The difference in the median measured parameters in exposed and unexposed groups was tested with the non-parametric Mann-Whitney U test. All calculations were performed with Statgraphics Plus 4.0. Statistically significant differences between exposed and control animals were divided into three categories with different numbers of stars assigned (* p < 0.05, ** p < 0.01, ***p < 0.001).
Results

Characterization of nanoparticles

TEM analysis showed the nanoparticles to have a relatively broad size distribution between 5 and 15 nm (Figure S1A, Supporting Information). The smaller nanoparticles are globularly shaped; while the larger ones have an octahedral shape. Energy dispersive X-ray spectroscopy (EDS) analysis showed that their composition matched to stoichiometry of CoFe$_2$O$_4$.

Zeta potential measurements showed the isoelectric point for CoFe$_2$O$_4$ nanoparticles at neutral pH. At pH 7.4 zeta potential is slightly negative. SEM revealed that particles remained spread over the entire leaf surface (Figure S1B, Table S2, Supporting Information) and energy dispersive X-ray analysis (EDX) revealed their chemical composition (Table S2, Supporting Information).

Feeding parameters, weight change and mortality

Animals were exposed to leaves dosed with CoCl$_2$ or a suspension of CoFe$_2$O$_4$ NPs, providing nominal concentrations of 1000, 2000 or 5000 µg CoCl$_2$ or CoFe$_2$O$_4$ nanoparticles per g of leaf. Weight and survival were not affected at this level of additive. In all four experiments there was a statistically significant difference in feeding rate between control groups and groups in which animals were exposed to 2000 or 5000 µg/g of CoCl$_2$. Exposure to CoFe$_2$O$_4$ nanoparticles had no effect on the feeding rate of animals in any experiment for the 14 days of the experiment. Compared to the control animals, the reduction in the feeding rate of animals exposed to CoCl$_2$ was statistically significant in higher concentrations (2000, 5000 µg/g) of Co in food as shown in Figure S2 (Supporting Information).

AO/EB analysis: Digestive gland cell membrane stability

Our previously published data demonstrate that the digestive gland cell membrane stability value was higher than 2 (on a scale from 0 to 9) in only 5% of animals from a stock culture and in good physiological condition, and this number was used as a benchmark. The cell membranes are considered destabilised when this value is higher than 2.
We combine results on cell membrane stability from all three experiments (A, B and C). The cell membrane stability of controls was not affected in more than ~10% of the animals and this was considered to be normal. An exposure concentration of 1000 µg CoCl₂/g in the food caused digestive gland cell membrane destabilization in up to 40% of exposed animals and an exposure concentration of 2000 µg CoCl₂/g in the food caused destabilization in up to 30% of exposed animals. Upon exposure to 1000 or 2000 µg nano-CoFe₂O₄ per g dry weight of leaves, approximately 10% and 20% of exposed animals respectively had destabilized digestive cell membrane. This is not statistically significantly different from controls, where one animal out of 22, had destabilized cell membrane. In animals exposed to Co, four animals out of a group of 10 animals fed with 1000 µg CoCl₂/g dry weight of leaf and three from a group fed with 1000 µg CoCl₂/g dry weight of leaf had destabilized cell membrane. The highest proportion of animals with destabilised membranes was found in a group fed on food containing 1000 µg CoCl₂/g dry weight of leaf, but this was not significantly different from a group of animals fed with 2000 µg CoCl₂/g dry weight of leaf (Figure 1).

Micro-PIXE analysis: Tissue distribution of Co and Fe

In the micro-PIXE analysis, the concentrations of elements with values above Minimum Limits Of Detection (MLDs) are simultaneously analyzed. In parallel to the distribution of Co and Fe in the tissue, the distribution of Cu is determined, indicating the locations of metal storing granules in Sg-cells of digestive gland epithelium.

In all the samples analysed, the concentrations of Fe were similar. In all the animals exposed to food dosed with CoFe₂O₄ NPs, concentrations of Co were statistically significantly higher than those measured in controls, where in most cases Co was below limit of detection (Figure 2A). As expected, very high concentrations of Co were also detected in animals fed with CoCl₂-dosed food (Figure 2B). Overlap with Cu was observed (Figure 2, Panels B and C) in all cases where Co was found in the epithelium. This co-localisation indicates that Co either originating from CoCl₂ or from nano-CoFe₂O₄ is stored in metal storing granules of S-cells. LE-XRF was used to assess co-localisation of Co and Fe in gland epithelium. This provides better spatial resolution (1 µm) allowing analysis at subcellular length scales. The same XRF protocol has been used successfully to analyse cellular distribution and degradation of CoFe₂O₄ NPs in fibroblast cells.²²
LE-XRF analysis: Cell distribution and colocalization of Co and Fe in digestive gland cells

To confirm the data obtained with PIXE and gather information at the subcellular level, LE-XRF analyses were used to study co-localisation of Co and Cu which was observed in all the samples. Outside this region Co was not detected. These results confirmed the absence of co-localization of Co and Fe but Fe was found at some other locations (Figure 3A and 3B), indicating either the presence of Fe in the animals before the experiment or production of Fe from the particles. Since the concentrations of Fe analysed by other methods (PIXE, AAS) did not show any increase of Fe in animals exposed to CoFe$_2$O$_4$ nanoparticles, we concluded that Fe is not derived in substantial amounts from CoFe$_2$O$_4$ nanoparticles.

AAS Analysis: Concentration of Co and Fe in digestive glands

After 14 days exposure of animals to CoCl$_2$ and CoFe$_2$O$_4$ NPs, the amounts of Co (experiments A and D) and Fe (experiment D) in digestive glands were measured. The amount of Co showed a statistically significant increase in both experiments in which animals were exposed to CoCl$_2$. This indicates that more Co accumulated when animals were exposed to Co ions as compared to nanoparticles. Statistically significant changes in experiment D occur among control animals and all exposed animals (Figure 4A). These results show that accumulation of Co in hepatopancreas is dose-dependent. No Fe accumulation was detected when animals were fed CoFe$_2$O$_4$ nanoparticles (Figure 4B).

Chemical analysis of Co dissolution from CoFe$_2$O$_4$ nanoparticles

All measurements of the supernatants fell below the detection limit of AAS analysis and we were able to conclude that levels of cobalt in the supernatant were below 0.009 µg/ml.

With AAs, the CoFe$_2$O$_4$ NPs suspension gave reliable measurements. The suspension with the concentration of 1000 µg/L of cobalt gave values of approximately 600-700 µg/L when diluted with distilled water and approximately 800 µg/L when diluted with HCl. The second suspension, with a concentration of 2000 µg/L of cobalt also gave higher measured values when diluted with HCl compared with distilled water. The values were approximately 1200 µg/L for distilled water and 1800 µg/L for HCl. The above values indicate that cobalt NPs dissolved in an acid solution, allowing better detection of cobalt by AAS.
Discussion

Feeding of the model terrestrial invertebrate *P. scaber* on food dosed with CoFe$_2$O$_4$ nanoparticles or Co ions (1000, 2000, or 5000 µg/g of leaf of CoCl$_2$ or nano-CoFe$_2$O$_4$) resulted in intracellular accumulation of Co ions, but not of particles. Toxic effects were ascribed to Co ions rather than CoFe$_2$O$_4$ nanoparticles themselves.

We have shown in our *in vivo* study that the observed toxicity as evidenced by reduced feeding rate and cytotoxicity as manifested by cell membrane stability are correlated to available metal ions in the food. The effect on feeding rate was dose dependent while cell membrane destabilisation was not significantly different between animals exposed to 1000 or 2000 µg/g of CoCl$_2$. This leads to the conclusion that if amount of Co available in the food is high enough, it leads to cytotoxic effects. Available metal ions were inferred from the amount of accumulated Co$^{2+}$ in the digestive gland cells and this amount was higher when animals were fed with food dosed with CoCl$_2$ than when with CoFe$_2$O$_4$ nanoparticles.

We have shown by x-ray-based techniques that only Co, but not Fe entered cells. Cobalt was always found to be co-localized with Cu and this indicates that Co follows the same cellular pathways as other metal ions, such as Cu$^{2+}$ which are transported to metal storage granules where they accumulate. This suggests that only ions generated from CoFe$_2$O$_4$ nanoparticles or available from CoCl$_2$ salt are internalised and that Co$^{2+}$ accumulation is dose-dependent.

Other authors report that Co nanoparticles and Co ions are both responsible for the effects on cells and explain that the nature of the effects depends on the type of the cell line, duration of exposure and applied nanoparticle concentration.15 Ponti et al. 23 reported that toxicity was higher for Co nanoparticles than for Co ions after 2 and 24 hours exposure, while Papis et al. 14 showed that CoCl$_2$ has a more severe cytotoxic effect on human cell lines compared to Co$_3$O$_4$ nanoparticles.

Dissolution of Co ions from nanoparticles has also been reported. Papis et al 14 evaluated spontaneous dissolution of Co ions from Co$_3$O$_4$ NPs in Phosphate buffered saline (PBS), distilled H$_2$O and culture medium. Their results showed that release of Co$^{2+}$ from NPs takes place in every tested medium but remains under 1% of the total Co in media. The percentage of leaching of Co ions from Co NPs in Dulbecco’s Modified Eagle Medium
(DMEM) was determined by Horev-Azaria et al.15 who found that incubation of the Co NPs for the 72 h resulted in decomposition of 44 ± 10% of the Co-NPs.

In our study we also used ultracentrifugation to measure the release of Co from CoFe nanoparticles in distilled water. The level of Co in supernatants was found to be below the detection limit of AAS instrument (0.009 µg/ml). The animals assimilated an average of approximately 7% of consumed cobalt when fed with Co salts, and between 1% and 2% of cobalt when fed with cobalt nanoparticles. These data are not in agreement with the extremely low levels (< 0.009 µg/ml) of dissolved Co indicated by the ultracentrifugation experiments. This finding suggests that the majority of assimilated Co decomposes inside the digestive system of tested animals and not in the suspension which was applied to the leaves. This is in agreement with our other studies on ZnO and CuCe (unpublished data).

The potential dissolution of particles inside organisms has not been intensively studied before. More attention was given to chemical analytical methods for measuring dissolution of particles from suspensions in different suspensions. We propose the use of a model biological system with a terrestrial isopod for studying potential dissolution of ions from metal containing nanoparticles in biologically complex media. A system which allows measuring dissolution of a variety of nanoparticles with different modifications is important to properly characterise particles before biomedical application as well as in the food industry.

Author information

Corresponding author

Phone: + 386 1 423 33. Fax: +386 1 257 33 90. E-mail: damjana.drobne@bf.uni-lj.si

Notes

The authors declare no competing financial interest
Figure 1. Percentage of animals in each exposure group in experiments A, B, and C with different degrees of destabilised cell membrane. Destabilization of the cell membrane was assessed visually and classified from 0 to 9 according to the predefined scale described in Materials and Methods. Digestive gland cell membrane stability value of 2 or less denotes animals which did not have destabilized cell membranes and digestive gland cell membrane stability values from 3 to 9 animals with some degree of destabilization of the cell membranes. A value of 7 corresponds to the most highly destabilized cell membranes. Statistical significant differences between exposed and control animals are marked with ** ($p < 0.01$). Nominal exposure concentrations (1000 or 2000 µg CoCl$_2$ or nano-CoFe$_2$O$_4$/g of leaf) and number of animals per group (n) are provided on the x-axis.
Figure 2. PIXE analyses of digestive gland cross section and corresponding concentrations of measured elements. (A) Elemental maps of Cu, Co and Fe in digestive glands of a control animal. (B) Cross section of digestive glands of animal exposed to food dosed with 2000 µg CoCl₂/g dry weight of food. (C) cross section of digestive glands of animal exposed to food dosed with 2000 µg nano-CoFe₂O₄/g dry weight of food. The elemental maps present the cross sections of three digestive gland tubes. Under each map, the
concentrations of elements for selected encirculated glands are provided together with corresponding Minimum Limit of Detection (MLD).

Figure 3. 80x80 µm² x-ray absorption images of part of digestive gland epithelium and the corresponding XRF maps. The distribution of Cu, Fe and Co in control animal (A) and in animal fed with food dosed with 2000 µg nano-CoFe₂O₄/ g dry weight of food (B). The co-localization of Co and Cu and Co and Fe for the fed animal are shown in (B) as well. All images and XRF maps were collected using photon energy of 1.14 keV.
Figure 4. Concentration of Co or Fe in hepatopancreas after 14 days of feeding with CoCl₂ salts or nano-CoFe₂O₄ dosed food in experiment D, measured by AAS. (A) Concentration of Co in hepatopancreas in experiment D. (B) Concentration of Fe in hepatopancreas in experiment D. Symbols on the box plot represent minimum and maximum data values (whiskers), mean value (□), 75th percentile (upper edge of box), 25th percentile (lower edge of box), median (line in box) and max and min value (-). Statistical differences between exposed and control animals are marked with *** (p < 0.001). Nominal exposure concentration (2000 or 5000 µg CoCl₂ or nano-CoFe₂O₄/g of leaf) and number of animals per group (n) are provided on x-axis. Ppm stands for unit µg/g.
Acknowledgements

Work of PhD student Sara Novak was supported by Slovenian Research Agency within the framework of young researchers. Part of work was conducted within research projects financed by Slovenian Research Agency (J1-4109) and within the 7th FP EU Project “NANOVALID” (contract: 263147). We thank G.W.A Milne for editorial assistance and Matej Hočevar from Institute of metals and technology Institute, Ljubljana for scanning electron micrographs.
References

