

Sara Novak^{1,*}, Damjana Drobne¹, Živa Pipan Tkalec¹, Janez Valant¹, Stephanie Sorieul², Jesus Santamaria,³ Maciej Zieba³, Victor Sebastian³, Manuel Arruebo³ *Presenting author: sara.novak@bf.uni-lj.si

Hypothesis

(Ag-NPs) Silver nanoparticles will provoke effects on different levels of biological complexity. If Ag⁺ and not Ag-NPs enter the cells then Ag⁺ will be found in metal storing granules of exposed tissue and will co-localize with copper, a marker of the locations of metal storing granules. If Ag⁺ enters cells they will be removed from the cytoplasm and no severe toxicity will occurred.

Transmission electron microscopy (TEM) of digestive glands exposed to Ag-NPs

TEM micrograph of cross section of / digestive gland cell of control animal (mc) mitochondria, (m) microvili.

 Ag^+ and not Ag-NPs enter the digestive gland cells after ingestion of different Ag nanoparticles. Clasical toxicological parameters did not show any toxicity of different Ag-NPs. Ancreased presence of lammelar bodies indicates either a removal of internalized Ag⁺ or a disturbance in lipid metabolism.

¹Department of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia ²Université Bordeaux, France ³Institute of Nanoscience of Aragon (INA), University of Zaragoza, Spain

NANOTOX 2014, 7th International Nanotoxicology Congress, Antalya

internalization of Ag ions and cellular structure alterations

Ag nanocubes and nanospheres Institute of Nanoscience of Aragon (INA)

Ingestion of Ag-NPs

Exposure concentration 0.03 to 5000 µg of Ag/g dry food.

Porcellio scaber (Ispoda, Crustacea)

Digestive gland- MODEL TISSUE

No effect on mortality, weight

change or feeding rate of

animals after 14 days of feeding

with Ag-NPs spiked food.

Conclusions

Do Ag-NPs or Ag⁺ enter the digestive gland cells? Particle induced X-ray emission analyses of cross section of digestive gland of animal exposed to Ag-NPs

Ag co-localised with Cu in metal storing granules ----- Ag⁺ rather than Ag-NPs particles entered the cells.

TEM micrographs of cross section of digestive gland cell of an animal exposed to 5000 µg Ag-NPs/g dry food.

- (A) altered microvilli (m),
- (B) altered mitochondria (mc),
- (C) example of lamellar body (lb) found in the cell of exposed animal.