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Abstract. Emerging fields such as nanomedicine and nanotoxicology, demand new information on the effects
of nanoparticles on biological membranes and lipid vesicles are suitable as an experimental model for bio-nano
interaction studies. This paper describes image processing algorithms which stitch video sequences into mosaics
and recording the shapes of thousands of lipid vesicles, which were used to assess the effect of CoFe2O4 nanopar-
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1 Introduction
Lipid vesicles are highly adaptive structures with a rich diversity
of shapes. Even minute asymmetries in the lipid bi-layers can
cause high spontaneous curvatures and deformations of vesicle,
causing its shape to range from spherical to pear-shaped, cup-
shaped, budded, and pearled.1, 2

Most experimental evidence on membrane behavior is pro-
vided by giant lipid vesicles1, 3, 4 which can be formed in various
sizes as uni- or multilamellar constructions and are objects of
research in diverse areas concerned with lipid membranes. Due
to their size, which is on the same order of magnitude as that
of cells, they are surrogates for cell membranes and can be
observed with a light microscope. Research on lipid vesicles
is extensively focused on their conformational behavior and
considers preferred shapes, shape transformations, and shape
fluctuations.1,5–8 Changes and fluctuations in the shape of vesi-
cles has been widely investigated by various techniques, most
commonly optical microscopy.7,9–11 The preponderance of the
published research concerns the observation of individual vesi-
cles or a well-defined group of vesicles.

Recently, research related to biological membranes has been
gaining importance due to the products emerging from new tech-
nologies. These include drugs and diagnostic tools, as well as
ingredients in food and cosmetics, whose primary reaction, at
the nanoscale level, is with cell membranes. These products have
many beneficial effects but may also provoke a toxic response.12

Interactions of nanoparticles with lipid vesicles that have been
studied thus far, reveal that nanoparticles induce lipid surface
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reconstruction,13 physical disruption of lipid membranes,14, 15

and shape transformations of lipid vesicles.16, 17 In our previ-
ous work17 we presented a controllable experimental setup for
data acquisition for the purpose of nanoparticle—lipid vesicle
interaction studies. We employed light microscopy and recorded
multiple micrographs of exposed and unexposed vesicle popu-
lations. Vesicles in the micrographs were segmented in order to
gather data on their shapes and sizes. The gathered data showed
that the vesicle population based approach is suited for this type
of research. However, in order to gather more reliable results, a
greater quantity of vesicles should be recorded in each popula-
tion, which is feasible by employing microscopy videos instead
of micrographs.

In the work presented in this paper, we introduce a method-
ology in which changes in shape of lipid vesicles in a popula-
tion of vesicles are recorded and statistically evaluated. In this
experiment, lipid vesicles of 1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphatidylcholine (POPC) were incubated with CoFe2O4

nanoparticles. These nanoparticles are often used in biomedicine
as an in vivo magnetic nanoparticle hyperthermia-inducing
agent.18 In addition, the CoFe2O4 nanoparticles are expected
to have the potential to non-specifically react with lipid mem-
branes. It is known that biological potential of nanoparticles is
related to their surface chemistry, and accordingly, we tested
two types of nanoparticles; uncoated cobalt-ferrite nanopar-
ticles (CF) and negative citrate-coated cobalt-ferrite (CF-CA)
nanoparticles.

In order to investigate the morphological characteristics of
lipid vesicles in ambient populations, we recorded a video se-
quence covering a larger area of the sample and containing
thousands of lipid vesicles, instead of individual micrographs of
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vesicles as it has typically been performed in such studies.17 To
allow manual or automatic segmentation of vesicles, the video
sequences were transformed into mosaics.

A mosaic, or panorama, is a large format image that has been
built by seamlessly stitching numerous smaller images that to-
gether cover an area wider than that which can be acquired
by a single field of view. Mosaics have been gaining popular-
ity not only among photographers, but also among scientists in
various areas, because such approaches can broaden the utility of
existing and available equipment. Recently, mosaics have been
applied to images produced by microscopy.19–22 When hundreds
of images must be stitched together to produce a mosaic, manual
imaging becomes increasingly difficult and to assure seamless
transitions between images, many conditions such as overlap
between images, lighting and focus conditions, and viewpoint
must be satisfied. These are not easily reconciled and various
automated systems have been proposed23, 24 including commer-
cial mosaicing software (Virtual Slice by MicroBrightField Inc.,
Williston, Vermont). Although such acquisition of data finds var-
ious applications in biology, medicine, and other fields where
microscopy mosaics are necessary, it is less appropriate for the
observation of more dynamic specimens in a strictly constrained
time window.

The population of giant lipid vesicles employed in our ex-
periments is an example of such specimen. The data must be
acquired in a short time in order to observe a large area, but all
the information required to stitch images into a mosaic, must
be retained. Microscopy video sequences as a basis for mosaic
stitching, have the potential to resolve both issues and although
its applications in biomedical imaging are rare, it is our preferred
choice.25

The aim of our work was to develop a methodology to enable
extraction of information on size and shape transformations of
vesicles in lipid vesicle populations incubated in a suspension
of nanoparticles. Microscopy video sequences of POPC lipid
vesicles incubated in a suspension of non-coated and the neg-
ative citrate-coated cobalt-ferrite nanoparticles, were recorded
and each video sequence of an investigated area was assembled
into a mosaic. Next, the giant lipid vesicles were segmented
from the mosaics, and their sizes and shapes were evaluated.
Issues of redundant data, computational efficiency, image fea-
tures enabling selection of high quality frames in terms of image
sharpness, stitching process, segmentation of vesicles, and anal-
ysis of their morphological characteristics, are discussed and the
advantages of a population-based approach to assess dynamic
conformational changes of vesicles are considered.

2 Materials and Methods
2.1 Proposed Methodology
The proposed methodology consists of five steps, as presented
in Fig. 1. The first step is the lipid vesicle experiment and the
recording of microscopy video sequences of lipid vesicles ex-
posed in different media. The procedure ends with a statistical
analysis of the vesicles’ shapes in the observed lipid vesicle
populations.

2.1.1 Experimental set up

Preparation of vesicles and nanoparticles. Giant unilamelar
phospholipid vesicles were prepared from 1-palmitoyl-2-oleoyl-
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Fig. 1 An outline of the proposed methodology. Shaded boxes present
the steps in the methodology and the text in italics gives the outputs of
these steps. Starting with the lipid vesicles experiment, we acquire the
microscopy videos. Next, these are transformed into mosaics with the
algorithms described here. In the next step, a human expert segments
vesicles in the mosaics with specific color for each morphological type
of vesicle. Data on the properties of these colored vesicles are analyzed
to extract underlying knowledge about the vesicle population. The text
in italic on the left of the shaded boxes, points to the sections of this
paper where the associated step is described in detail.

sn-glycero-3-phosphatidylcholine (POPC) at room temperature
by the modified electroformation method26 as described in de-
tail elsewhere.27 They were created in saccharose solution and
rinsed with an equi-osmolar glucose solution. The intact mem-
brane is impermeable to sugar molecules, and the composi-
tion inside the vesicles, primarily saccharose, differs from the
saccharose/glucose composition outside. Because of this, the
lipid vesicles’ interior appears darker from the surrounding
medium in the micrographs and is easier to distinguish from the

l
solution with
lipid vesicles

Fig. 2 (a) The solution with lipid vesicles on the object glass is covered
with a glass plate and the suspension with the investigated additive is
added. The place where the videos are recorded is shown and the
arrow shows direction of recording. (b) Transverse section of the object
and cover glasses and the suspension with lipid vesicles. A majority of
the vesicles are in the same focal plane at the bottom of the chamber.
The scheme is not to scale.
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background. A 5% glucose suspension containing lipid vesicles
(45 μl) was administered to each object glass [Fig. 2(a)] and a
strip of silicone gel was applied on two opposite sides of the
cover glass to act as a spacer between the cover and the object
glass. Subsequently, a droplet of a suspension with investigated
additive was added to the vesicles and finally, the additional two
edges of the cover glass were filled with the silicon paste to
minimize evaporation.

The nanoparticles were synthesized by co-precipitation us-
ing NaOH from aqueous solutions of Co(II) and Fe(III) ions
at elevated temperatures. The samples of CF were thoroughly
washed with water and suspended in an aqueous solution of glu-
cose. The nanoparticles in suspension agglomerate strongly and
such agglomeration must be prevented in order to prepare stable
suspensions of the nanoparticles. To achieve this, citric acid was
adsorbed to the surface of the nanoparticles. The nanoparticles
have relatively broad size distribution ranging from 5 to >15 nm.
The smaller nanoparticles are globular, while the larger are oc-
tahedral in shape. Energy dispersive x-ray spectroscopy (EDS)
showed their stoichiometric composition to be CoFe2O4. The
effects of both non-coated cobalt-ferrite nanoparticles (CF) and
the negative citrate-coated cobalt-ferrite nanoparticles (CF-CA)
were investigated.

Incubation of vesicles with nanoparticles. Preliminary experi-
ments showed that the small negative buoyancy of the vesicles
causes them to collect at the bottom of the suspension.17, 28 We
have experimentally confirmed that after up to 5 min, a majority
of the vesicles are in the same plane, collected near the lower
object glass. This allows us to record the vesicles with only mi-
nor adjustments to the focal plane. The vesicles were incubated
for up to 90 min.

Recording of vesicles. With the specimen mounted to the stage
of the light microscope, 1-dimensional video tracks of specimen
were recorded [Fig. 2(a)–2(b)] at 400× magnification. The width
of each track was 195 μm and the length, 1 cm. By recording
the tracks we captured a subsample of the population where
all vesicles of a single track were at approximately the same
distance from the place where the nanoparticles had been added.

2.1.2 Video to mosaic steps

Each video sequence of approximately 5 min of a selected track
on the object glass was then transformed into a mosaic of the
entire recorded area. This process consists of multiple steps
related to the transformation of videos to mosaics, mosaicing,
(Fig. 3) and are described in detail in the Results section of
this paper. The output of mosaicing is a single mosaic, stitched
together from the selected frames of the video sequence. Some
steps of the mosaicing were necessary only for the first video
sequence, which involves the training of classifiers for frame
quantity reduction and calculation of lens noise. The models
(classifiers, measures) generated in these steps can subsequently
be used on all remaining video sequences of the experiment.
Here, we refer to this video sequence of a single track used in
training as the pilot video. It was selected randomly among the
videos recorded in the experiment.

l l

l ll l

l

l

l

Fig. 3 An outline of the steps required for transforming video se-
quences to mosaics. Boxes represent processing steps and the text
in italics their outputs. Only the first (pilot) video sequence of the ex-
periment is used for training classifiers in the non-shaded steps while
the shaded steps are required for all videos. The numbers at the side
of each step indicate the section of this paper describing the step in
detail. LDA—Linear discriminant analysis.

2.1.3 Vesicle segmentation and statistical analysis

We developed a plug-in for the open source image processing
software ImageJ29 which was used to manually segment the
vesicles from mosaics. Segmentation by an expert is the direct
link between qualitative and quantitative data, and has to be
executed with a high degree of confidence to allow reliable
vesicle morphology detection with automatic image processing
approaches. For every segmented vesicle, its properties (area,
diameter, shape) were recorded.

2.2 Hardware and Software Components
All processing was performed on a PC with a Quad CPU at
2.33 GHz, 8 GB RAM, on Windows Server HPC 64-bit edition,
2007. The image processing algorithms were developed in MAT-
LAB 2009b, the ImageJ plug-in “Shape Segmenter” was devel-
oped in Java with the use of the environment Eclipse. Microsoft
Excel 2007 and MATLAB were used for statistical analysis. The
invert microscope used was a Nikon Eclipse TE2000-S with an
attached Sony CCD video camera module, model: XC-77 CE.
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3 Results
3.1 Preprocessing of Video Sequences
Video sequences, 768 pixels wide and 576 pixels high,
were acquired at a rate of 25 frames per second and
compressed with DivX video compression. Each video was
then split into a sequence of individual frames, 1500 for
every minute. The videos were recorded with a color
camera, but since the colors contained no additional in-
formation, we converted all frames into grayscale–intensity
values with equal regard to each of the three color channels
(RGB)[I ntensi t y = 1/3× (red + green + blue)]. All frames
were de-interlaced with bicubic interpolation and every second
de-interlaced frame was discarded. The frames had a thin black
region on the sides and were thus cropped to a size of 762
× 570 pixels.

Due to impurities in the microscope hardware (lenses,
glasses, camera), some artifacts appeared on video sequence
frames and had to be removed before proceeding (Fig. 4). To re-
move these artifacts, we selected a random subsample of ∼200
frames of the pilot video sequence, and calculated the median in-
tensity values of every pixel (Inoise). This way, the median value
of pixels which were not obstructed by lens noise resulted in the
gray value of the background while the pixels representing lens
noise appeared darker [Fig. 4(d)]. To remove this additive noise
from the video sequence, each frame is filtered using:

Iclean(i, j) = Idirty(i, j) − [Inoise(i, j) − meani, j (Idirty)];

i = 1 . . . M ; j = 1 . . . N , (1)

where M and N are the height and width of the frame and
meani,j(I) is the mean intensity value of the image I. This step
was carried out for every frame of all video sequences using the
noise image obtained from the pilot video sequence.

3.2 Frame Registration
The first step in mosaicing is to calculate the translation be-
tween frames of the video sequence. Each translation between
two consecutive frames is presented as a vector with two val-
ues, pixel translation in vertical and horizontal directions. Even
though sliding of the object glass during the recording in our
experiments is supposed to be 1-dimensional, the cumulative

Fig. 4 Figures (a)–(d) show the same part of a video frame. (a) Original
image, (b) zero median result after removal of artifacts, (c) after de-
interlacing, and (d) additive noise artifacts.

translation usually also reveals a small translation in the second
dimension, due to the mechanical imprecision of the object glass
slider. This is always smaller than 3% of the translation in the
first dimension.

To calculate the translation, we find the peak value of the
2-dimensional normalized cross-correlation coefficient between
the edge maps of each two consecutive frames. Proper filtering
of the original images prior to edge estimation is a fundamental
operation of image processing. A bilateral filter, which is an
edge preserving smoothing technique, effectively a convolution
with a non-linear Gaussian filter, with weights based on pixel
intensities, is used.30 This results in blurring of generally flat
surfaces such as the background, and consequent removal of the
small glitches and undesired specimens out of the focal plane,
without the loss of information on distinctive edges, in this case,
the vesicle borders. Frames are then transformed into edge maps
with the Sobel edge detector,31 using default settings in MATLAB

7.9.0, 2009b. We employ the 2-dimensional normalized cross
correlation on these edge values instead of the intensity values
when estimating the translation. The cumulative translations are
then used to calculate the size of the mosaic—the image that rep-
resents the whole area recorded in the video sequence. When the
translations from the first to the ith frame are summed, the sum
represents the exact location of the ith frame inside the mosaic.

3.3 Selecting the Best Frames for Mosaicing
3.3.1 Removing distorted frames

Every vesicle was present in multiple consecutive frames, and
the “frame quality,” the sharpness of vesicles in the frames var-
ied throughout the video sequence. When stitching a mosaic
from a video sequence, there are many frames with an overlap
of 90% or more pixels. It is crucial to discard the frames that
hold imperfect, or skewed information or hold no new informa-
tion at all. As the speed of object glass sliding was not uniform
throughout the video, the moments when the object glass slid-
ing was accelerated resulted in distorted frames. We designed
a classifier to separate the sharp and useful frames from the
distorted ones, which contained motion artifacts (Fig. 5). First,
we randomly picked a subset of 500 frames (10% of all frames)
from the pilot video sequence and manually labelled them as
“good” or “distorted”, based on direct observation. These la-
belled frames were used to train a Linear Discriminant Analysis
(LDA) classifier.32 When deciding which features to use for
classification, multiple measures previously proposed for auto-
focusing in computer microscopy33 were compared. We calcu-
lated variance, contrast, entropy, Brenner gradient,34 and multi-
ple image frequency based features for every frame of our video
sequence. VizRank,35 a tool that automatically discovers and
ranks interesting two-dimensional projections of class-labelled
data, was employed to find the most promising features. Three
features were selected. The first two were the Brenner gradient
Eq. (2) and the contrast feature Eq. (3):

Brenner =
N−2∑

i=1

M∑

j=1

[I (i, j) − I (i + 2, j)]2, (2)

Contrast = maxi, j I (i, j) − mini, j I (i, j)

maxi, j I (i, j) + mini, j I (i, j)
, (3)
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Fig. 5 (a) The vesicles have a sharp border. Frames containing sharp vesicles were labelled as “good” for the purpose of our classifier. (b) The
frames, where the same vesicles are distorted due to a motion artifact which occurred when the movement of object glass under the microscope
was accelerated. For the purpose of classification, these frames were labelled as “distorted”.

where M and N are the height and width of the frame, and
I(i,j) is the intensity value. The third feature is based on the
amplitude of the absolute frequency contained in the columns of
the frame. For every frame, we compute the Absolute Frequency
Amplitude (AFAs) which is the mean of the area under the
frequency curve in the frequency bandwidth from s to 1 over
the columns of a single frame, where 0<s<1, corresponding to
lowest and highest frequencies of the column respectively. AFAs

is computed as follows:

AFAs = 1

N

M/2∑

f =s

N∑

j=1

|Sj ( f )|, (4)

where Sj(f) is the amplitude of the M-point Discrete Fourier
Transform (DFT) frequency f of the jth column of the frame.
The AFAs is then normalized by AFA0, the total absolute fre-
quency amplitude under the frequency curve, which gives us the
Absolute Frequency Amplitude Feature (AFAF). In other words,
the AFAF is the ratio between the high pass that covers the top
67% of the frequency band, and the total absolute frequency
amplitude under the frequency curve of the column:

AFAF = AFAM/6

AFA0
. (5)

The optimal s numbers (0 and M/6) for AFAF in our classi-
fication were selected by random sampling, M in our case was
570, which is the height of a frame column. This normalized
metric (AFAF) is used as one of the three feature for classifica-
tion.

Using these three features, the LDA classifier was used to
separate the distorted and good frames. On a training set of 500
labelled frames, using cross-validation, LDA was on average
able to correctly classify 90% of frames. This classifier, trained
on 500 frames of the pilot video sequence was then successfully
used to classify frames of the remaining video sequences. The
LDA was used as the classifier because despite its simplicity, it
provided a sufficiently accurate and generalized classification.

3.3.2 Removing focusing frames

Just as the sliding of the object glass was accelerated at some
places, there was no sliding at all at some other places. This is
most evident in the parts of the video sequence, where the op-
erator stopped and adjusted the focal plane to find the sharpest
representation of the vesicles in view. Due to the focus adjust-
ments, the number of frames representing the same area during
the adjustment accumulated by 25 every second. However, be-
cause of changing focus, the representation of vesicles in these
frames varied from out of focus to in focus. For the mosaic

stitching, we decided to keep only the frames where the vesicles
are in focus. We introduced a new, “Focus measure,” to compare
subsequent frames for sharpness of vesicles (quality of focus)
and select the sharpest ones. The training procedure to acquire
the focus measure was conducted as follows. Six different fo-
cusing locations of the pilot video sequence presented as six
highest peaks in graph (Fig. 6) were selected as data sets with
200 frames each. In all cases, less than 200 frames were nec-
essary for the microscopist to adjust the frame focus. These six
datasets (all together 1200 frames) were then used for training
and testing of our Focus measure. These frames were manually
labeled as the “good” frames (in focus) or “focusing” frames (to
be discarded). Similarly to our “good” vs. “distorted” classifi-
cation of frames (Sec. 3.3.1), multiple features were computed
for every frame and VizRank was again employed to choose the
optimal subset of features. The selected subset of features was
composed of: the Brenner Gradient Eq. (2), the AFAF Eq. (5),
and Entropy:

Entropy = −
255∑

k=0

p(k) · log2 p(k), (6)

where p(k) is the probability of I(i,j) = k intensity. LDA was
again employed to classify the “good” from the “focusing”
frames, but this time the trained classifier was not used for
classification. The output of the LDA is a discriminant hyper-
plane which best separates the two classes. Projecting the feature

Fig. 6 The data in the graph is from a video sequence of 5,250 frames
(3.5 min at 25 frames per second). Spikes in the graph present focus-
ing locations where the spike height equals to the number of frames
since last camera movement. The higher the spike, the more time (and
consequently frames) was required for the operator to acquire a sharp
image of the vesicles at that location.
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Fig. 7 Each of the six plots presents two density distributions of the focus measure values. The full line represents the distribution of values when
calculated only for the frames labelled as good, and the dotted line represents the frames labelled as focusing. Six plots (a–f) represent six focusing
locations of the pilot video sequence (six highest peaks of Fig. 6). In all six plots, the greater values of Focus measure correspond to frames in focus
and the lower values correspond to frames out of focus.

vector of each micrograph onto the normal vector (vector inner
product), which is perpendicular to the discriminant hyperplane,
returns a scalar. In a classification problem, a threshold has to
be set to allow separating the classes. Instead, projections of the
micrograph feature vectors were used as a measure to compare
frames for focus quality. As shown in Fig. 7, a greater focus
measure value in a specific focusing situation can be associated
with the frame which is generally more in focus. This focus
measure is trained on the pilot video sequence and then ad-
ditionally used to select the sharpest frames in the remaining
video sequences. Wherever focus adjustments are encountered
in a video sequence, the focus measure of all focusing frames is
computed. Only the frames with the highest value are used for
mosaic stitching.

3.4 Buffered Stitching
At the resolution of the video sequences in our experiment
(762×570 pixels), the average non-zero vertical translation be-
tween consecutive frames was 9 pixels, which is approximately
1.5% of the frame height, and suggests a 98.5% overlap between
successive frames. At a duration of 5 min, which is the upper
limit for our video sequence duration in this experiment, the
video consists of roughly 7500 frames. Since our processing
methods in Matlab require the image intensity values to be rep-
resented in a double format (8 bytes per pixel), the whole dataset
requires 762 × 570 × 7500 × 8 B = 26 GB of RAM. In order
to make our algorithms more general and applicable to different
experiments and therefore longer video durations, we decided to
break down the mosaic stitching into subsets of frames – buffers
(Fig. 8). The accumulated memory constraint for each buffer
can be limited to the available RAM in the computer used for
mosaic stitching. Here, this constraint was set to limit the buffer
size to 3 GB of RAM.

The vesicles in the video sequence are not completely uni-
formly distributed throughout the video, and some areas contain

more vesicles than others. In order to find areas with fewer vesi-
cles and use them for borders between buffers, we calculated
the average variance of every horizontal line of the mosaic. The
lines with the lowest LineVariance Eq. (7) were also the lines
with few or no vesicles (Fig. 9). LineVariance for the ith line is
calculated as:

LineV ariancei = 1

K · N
·

K∑

k=1

N∑

j=1

(Ik(i, j) − μk(i))2, (7)

where N is the frame width, I is the intensity, i corresponds to the
successive line in the mosaic, μk(i) is the mean intensity value
of the ith line in frame k that contains this line in a given buffer,
and K is the number of frames that contain the ith line. The
process of separating the mosaic processing into manageable

Fig. 8 Interpretation of frames of the video sequence in our algorithms.
Translation, presented in the left shaded cubicle, is the movement be-
tween two consecutive frames. The right shaded cubicle represents a
single buffer with all corresponding frames of the video sequence. Each
buffer contained a full width slice of the mosaic.
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Fig. 9 Lines without vesicles in the frame on the left correspond to variance minima in the plot of LineVariance Eq. (7) on the right. Potential buffer
borders are found in this way, and are marked by horizontal lines leading from the plot on the right to the frame on the left.

buffers was performed as a constrained optimization problem,
as follows.

The function LineVariance, computed over the mosaic height
was smoothed with a moving average of 20 and the local minima
were extracted. We used a hierarchical approach to determine
which of the local minima of LineVariance to use as buffer
borders. This was done by sorting the local minima in ascending
order and iteratively splitting bigger buffers of the mosaic into
smaller and smaller buffers until every buffer size satisfied the
preset memory constraint. To blend all frames of a single buffer
into representation of the area, the median intensity value of
frames included in the buffer is calculated. These median images
of the buffers are then combined into the mosaic representing
the entire area of the recorded video sequence (Fig. 8). The
transitions between buffer borders are smooth and unnoticeable,
because two consecutive buffers always contain (different) parts
of the same frames. A part of a stitched mosaic is presented in
Fig. 10.

Fig. 10 Part of a mosaic stitched from a microscopy video sequence
of a single track. The whole track is approximately 33 times the height
of the presented sample. The rectangle in the centre represents a single
field of view that can be observed at 400x magnification and is also
the size of a single frame.

3.5 Validation of Mosaic Stitching
To validate the mosaic stitching, we inspected the mosaic and
compared the vesicles in it with the vesicles in the original
video sequence from which the mosaic was stitched. We found
all vesicles in both, and were therefore able to confirm that
the mosaics are valid representations of the video sequences.
Additionally, the length of every mosaic in pixels was shown
to be equal to the actual length of the recorded region in the
specimen.

3.6 Vesicle Segmentation and Statistical Analysis
We developed a plug-in for open source software ImageJ that
was used to manually segment the vesicles incubated in differ-
ent media. Every vesicle was segmented with a unique colour
representing the vesicle type (eight types all together), to form
a mask (bottom row of Fig. 11) which was later extracted with
MATLAB. The area of every vesicle was calculated, and for all
spherical vesicles also their diameters. More than 90% of all
detected vesicles were classified as spherical and the rest were
nonspherical shapes.

3.7 Vesicle Size and Shape Changes After
Incubation

This methodology was applied to three lipid vesicle populations
to assess the shape and size transformations of the vesicles. The
first population was exposed to neutral CoFe2O4 nanoparticles
(CF), the second population to negatively charged citrate-coated
CoFe2O4 nanoparticles (CF-CA), and the third population was
left unexposed and used as a control (C). The duration of expo-
sure was 90 min in all three cases. We were able to detect the fol-
lowing differences between CF, CF-CA, and C populations. The
mean diameter of the spherical vesicles in the control population
(C) decreased from 6.5 μm to 6 μm after 90 min incubation,
while the mean diameters in the CF and CF-CA populations
increased to 8.1 μm and 8.5 μm, respectively [Fig. 12(a)]. Non-
spherical vesicles were up to three times more likely to appear
in CF and CF-CA exposed populations than in the C population
[Fig. 12(b)]. The differing occurrence of pearled vesicles was
particularly noticeable [Fig. 12(c)]. Nonspherical vesicles rep-
resented from 5–15% of all vesicles in the exposed populations.

An additional detected difference was in the distribution of
the diameter sizes of the vesicles in the populations. The results
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Fig. 11 Vesicles of all detected types manually labelled with our Shape Segmenter plug-in for ImageJ. The upper row shows the vesicle shapes and
the lower row shows the way the vesicles in the upper row were segmented with the Shape segmenter ImageJ plug-in. (a) Spherical vesicle, (b–f)
nonspherical vesicles, more specifically: (b) pear shaped vesicle, (c) circle with vesicles and tubes, (d) tube, (e) pearled vesicle, (f) long threaded
pearled vesicle.

of the Kolmogorov-Smirnov test36 on the differences between
the distributions are presented in Tab. 1. We can observe minimal
changes of cumulative distribution function (CDF) in the C
population before and after 90 min of incubation, whereas results
from the CF and CF-CA populations suggest significantly more
vesicles with larger diameter (Fig. 13). The total quantity of
vesicles in all experimental populations together was 6,065.

4 Discussion
The developed methodology enables extraction of data on size
and shape transformations of thousands of POPC lipid vesicles
incubated in different media. The protocol began with recording
videos of vesicle populations exposed to different nanoparticles,
then image processing methods were applied to form mosaics
from the video sequences and finally, we segmented vesicles
and conducted a statistical analysis of data extracted from the
segmented vesicles. Using this approach, differences in the mor-
phological properties of lipid vesicles incubated in a suspension
with or without nanoparticles were demonstrated. In addition,
differences in shape transformations of populations of lipid vesi-
cles incubated with neutral cobalt-ferrite nanoparticles and those
incubated with negatively charged citrate-coated cobalt-ferrite
nanoparticles were detected.

Table 1 The diameter size distributions of spherical vesicles in pop-
ulations were compared with a two-sample Kolmogorov-Smirnov test.
The results of the statistical test on the distributions can be categorised
as: = equal, * p < 0.01, ** p < 0.001, *** p < 0.0001.

Duration [min] 0 90

Population C C CF CF-CA

0 C = ** *** ***

90 C ** = *** ***

CF *** *** = ***

CF-CA *** *** *** =

Our data on size and shape transformations of giant lipid vesi-
cles incubated in a suspension of nanoparticles, confirm find-
ings described by other authors.13, 16 Incubation in a suspension
of neutral CoFe2O4 (CF) or negatively charged citrate-coated
CoFe2O4 nanoparticles (CF-CA), results in an increased quan-
tity of nonspherical vesicles [Fig. 12(b)–12(c)], the increase
being most notable in occurrences of pearled vesicles.16 Yu
et al. additionally reported formation of pearled vesicles as
a result of interaction between lipid vesicles and negatively
charged nanoparticles. They explained that cationic nanopar-
ticles absorb onto vesicles causing a mismatch of surface area
between the outer and inner leaflets of the bilayer result in pearl
formation.

Studying the dynamic nature of shape transformations of
vesicles under different stimuli is a challenging task2, 16, 37 for
which light microscopy is indispensable. However, when ob-
served individually, only a limited number of vesicles can be
investigated. By extending the light microscopy approach by
means of providing data on large quantities of vesicles, more
information on conformational behavior of vesicles can be ex-
tracted. The methodology presented and applied in our study
offers this possibility. It enables the acquisition of video se-
quences of areas of the specimen, and stitching the video frames
into a single large image, a mosaic. We succeeded in developing
classifiers to remove frames of the video sequence that are out
of focus and frames which are distorted due to motion artifacts
which occur when the movement of object glass is accelerated.
Image features such as the Brenner gradient, entropy, contrast
and our Absolute Frequency Amplitude Feature are used for
classification and reduction of video frames to those of better
sharpness. Additionally, a hierarchical optimization algorithm is
proposed to split the mosaic stitching into buffers. Thus, video
sequences of arbitrary long duration can be stitched into mo-
saics on a computer with as little as 2 GB of RAM (minimal
requirement recommendation).

Majority of the available commercial solutions for mosaic-
ing focus on stitching together individual overlapping images
only. However, when stitching frames of a video sequence, the
large quantity of nearly completely overlapping frames makes
these algorithms vastly memory intensive. Image registration in
commercial software applications is generally computed be-
tween more than two consequent frames, which is incredibly
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Fig. 12 (a) Mean diameter size of spherical vesicles for each experimental population, (b) number of nonspherical vesicles per 100 vesicles
and (c) number of pearled vesicles per 1000 vesicles. The experimental populations are: C–control, CF–neutral Cobalt-ferrite nanoparticles and
CF-CA–negatively charged citrate-coated Cobalt-ferrite nanoparticles. Vesicles in the C population were observed at time 0, and vesicles in all three
populations were observed after 90 min of incubation.

time consuming and can generate false translation information.
Since all frames contain lipid vesicles, two frames, which are re-
motely separate in the video sequence, might be visually similar,
and therefore falsely computed as having considerable overlap.
We would like to mention that the proposed method is not opti-
mal in any sense and we do not claim that it is superior to any
other method. Our main purpose is to demonstrate that rapidly
acquired lower quality frames in the form of a video, as op-
posed to a sequence of carefully acquired images with slower
progression over the area, could be utilized for the analysis of
nanoparticle effects on lipid vesicles. For this purpose, the pro-
posed approach is novel, simple, and satisfactory.

In the future, the methodology can be improved by devel-
oping image segmentation algorithms which allow automatic
segmentation of vesicles from our microscopy mosaics. This
will permit completely automated processing of recorded video
sequences and reduce the time required for vesicle segmentation

l

Vesicle diamter CDF

Fig. 13 Each curve presents a cumulative distribution function (CDF)
of the diameters of spherical lipid vesicles. The X axis gives sizes of
the lipid vesicles in micrometers and F(X) is percentage of all vesicles
with diameter smaller than X. We can observe minimal changes of CDF
in the C group before and after 90 min of incubation. However, the
distributions in the sizes of CF and CF-CA lipid vesicles suggest notably
more vesicles with larger diameter. The vesicles with diameters above
40 μm are not shown because vesicles they represent less than 0.5%
of the vesicle population.

from hours of input by experts, to minutes of computer process-
ing. In addition, the repeatability of experiments will be tested
and different time frames will be selected in order to allow us
to follow a detailed time dependent response. The developed
algorithms and plug-ins will be made available for other users
to test shape transformations of lipid vesicles.

We conclude that the methodology presented holds much
promise for future studies of responses of lipid vesicle popu-
lations to various substances. Among these, nanoparticles are
perhaps the most challenging and interesting.
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approach to analyse effects of nanoparticles on lipid vesicles,” Int. J.
Biomed. Nanosci. Nanotechnol. 1(1), 34–51 (2010).

18. S. Bae, S. W. Lee, Y. Takemura, Y. H. Jo, S. G. Lee, “AC Magnetic-
Field-Induced Heating and Physical Properties of Ferrite Nanoparticles
for a Hyperthermia Agent in Medicine,” IEEE Trans. Nanotechnol.
8(1), 86–94 (2009).

19. B. Ma, T. Zimmermann, M. Rohde, S. Winkelbach, F. He, W. Linden-
maier, and K. E. J. Dittmar, “Use of Autostitch for automatic stitching
of microscope images,” Micron 38(5), 492–499 (2007).

20. A. Campilho and M. Kamel, “A Stitching Algorithm for Automatic
Registration of Digital Radiographs,” Lect. Notes Comput. Sci.: Image
Analysis and Recognition 5112, 854–862 (2008).

21. W. Mitzner, J. Fallica, and J. Bishai, “Anisotropic Nature of
Mouse Lung Parenchyma,” Ann. Biomed. Eng. 36(12), 2111–2120
(2008).

22. D. S. Gareau, Y. B. Li, K. S. Nehal, M. Rajadhyaksha, B. Huang,
and Z. Eastman, “Confocal mosaicing microscopy in Mohs skin exci-
sions: feasibility of rapid surgical pathology,” J. Biomed. Opt. 13(5)
054001–12 (2008).

23. J. Kopf, M. Uyttendaele, O. Deussen, and M. F. Cohen, “Capturing
and viewing Gigapixel images,” ACM Trans. Graphics 26(3), 93–102
(2007).

24. S. K. Chow, H. Hakozaki, D. L. Price, N. A. B. Maclean, T. J.
Deerinck, J. C. Bouwer, M. E. Martone, S. T. Peltier and M. H. Ellisman,
“Automated microscopy system for mosaic acquisition and processing,”
J. Microsc.-Oxford 222, 76–84 (2006).

25. S. De Backer, F. Cornelissen, J. Lemeire, R. Nuydens, T. Meert, P.
Schelkens, and P. Schelkens, “Mosaicing of Fibered Fluorescence Mi-
croscopy Video,” in Advanced Concepts for Intelligent Vision Systems,
Lect. Notes Comput. Sci. 5259, 915–923 (2008).

26. M. I. Angelova, S. Soléau, P. Meleard, F. Faucon, and P. Bothorel,
“Preparation of giant vesicles by external AC electric fields. Kinetics
and applications,” Trends Colloid Interface Sci. 89, 127–131 (1992).

27. V. Kralj-Iglic, G. Gomiscek, J. Majhenc, V. Arrigler, and S. Svetina,
“Myelin-like protrusions of giant phospholipid vesicles prepared by
electroformation,” Colloids Surf. A 181(1–3), 315–318 (2001).

28. H. G. Dobereiner, E. Evans, M. Kraus, U. Seifert, and M. Wortis,
“Mapping vesicle shapes into the phase diagram: A comparison of
experiment and theory,” Phys. Rev. E 55(4), 4458–4474 (1997).

29. M. D. Abramoff, P.J. Magelhaes, and S.J. Ram, “Image Processing
with ImageJ,” Biophotonics Int. 11(7), 36–42, (2004).

30. C. Tomasi and R. Manduchi, “Bilateral Filtering of Gray and Colored
Images.” in Proc. IEEE International Conference on Computer Vision
(1998).

31. R. C. Gonzales and R.C. Woods, “ Digital image processing,” Addison-
Wesley, Reading, MA (1992).

32. G. J. McLachlan, “Discriminant Analysis and Statistical Pattern Recog-
nition,” Wiley Interscience (2004).

33. Y. Sun, S. Duthaler, and B. J. Nelson, “Autofocusing in computer
microscopy: Selecting the optimal focus algorithm,” Microsc. Res. Tech.
65(3), 139–149 (2004).

34. S. Yazdanfar, K. B. Kenny, K. Tasimi, A. D. Corwin, E. L. Dixon, and
R. J. Filkins, “Simple and robust image-based autofocusing for digital
microscopy,” Opt. Express 16(12), 8670–8677 (2008).

35. G. Leban, I. Bratko, Uros Petrovic, T. Curk and B. Zupan, “VizRank:
finding informative data projections in functional genomics by machine
learning,” Bioinformatics 21(3), 413–414 (2005).

36. F. J. Massey, “The Kolmogorov-Smirnov test for goodness of fit,”
J. Am. Stat. Assoc. 46(253), 68–78 (1951).

37. J. Kas and E. Sackmann, “Shape transitions and shape stability of
giant phospholipid-vesicles in pure water induced by area-to-volume
changes,” Biophys. J. 60(4), 825–844 (1991) .

Journal of Biomedical Optics February 2011 � Vol. 16(2)026003-10


