Electron and ion imaging of gland cells using the FIB/SEM system

Drobne D, Milani M, Zrimec A, Lešer V, Berden Zrimec M
[ pdf ] [ site ] Journal of Microscopy, 2005

The FIB/SEM system was satisfactorily used for scanning ion (SIM) and scanning electron microscopy (SEM) of gland epithelial cells of a terrestrial isopod Porcellio scaber (Isopoda, Crustacea). The interior of cells was exposed by site-specific in situ focused ion beam (FIB) milling. Scanning ion (SI) imaging was an adequate substitution for scanning electron (SE) imaging when charging rendered SE imaging impossible. No significant differences in resolution between the SI and SE images were observed. The contrast on both the SI and SE images is a topographic. The consequences of SI imaging are, among others, introduction of Ga+ ions on/into the samples and destruction of the imaged surface. These two characteristics of SI imaging can be used advantageously. Introduction of Ga+ ions onto the specimen neutralizes the charge effect in the subsequent SE imaging. In addition, the destructive nature of SI imaging can be used as a tool for the gradual removal of the exposed layer of the imaged surface, uncovering the structures lying beneath. Alternative SEM and SIM in combination with site-specific in situ FIB sample sectioning made it possible to image the submicrometre structures of gland epithelium cells with reproducibility, repeatability and in the same range of magnifications as in transmission electron microscopy (TEM). At the present state of technology, ultrastructural elements imaged by the FIB/SEM system cannot be directly identified by comparison with TEM images.